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Abstract—The longitudinal compressive buckling loads of thin-walled cylinders in the yield region
were analyzed by using both the incremental and the finite forms of a non-classical constitutive
relation of plasticity (NCP). The relations of the critical stress o, vs the ratio between R (the radius)
and A (the thickness of the wall) were derived. The critical stresses of the thin-walled cylinders made
of aluminum alloys AMI and IT1T were analyzed and compared with the experimental results.
Comparison shows that for the cylinders made of IT1T both forms of NCP can provide reasonable
prediction ; but for those made of AMT, the result given by the finite form of NCP is satisfactory,
while the critical stress predicted by the incremental form of NCP is about 25% higher than the
experimental data. The capability of the NCP in the description of the material instability, the
response of material under an abrupt strain disturbance and its easy application indicate that it may
be of potential in the analysis of structural buckling. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Thin-walled structures are widely used in aviation, chemistry, submarines, vehicles, nuclear
reactors, civil engineering, and many other practical and high-technology industries. The
failure of the structure caused by elastoplastic buckling has been extremely concerned over
by the relevant researchers of mechanics and mechanical designers in a long period. In
order to prevent this kind of failure, more realistic and reliable analysis is required. In the
past several decades great effort has been made in this aspect, but few effective works can
be found in the literature.

Since elastoplastic buckling may involve complicated loading/unloading, material
instability and the effect of microscopic defects, it is necessary to use a more realistic
constitutive relation for the analysis. In the past twenty years many new constitutive models,
such as the multi-yield-surface model (Mroz, 1969), the tangent stiffness model (Dafalias,
1976), the model with the evolution of back stress that takes into account the thermal
recovery effect (Chaboche, 1979), the endochronic theory of plasticity (Valanis, 1971, 1980)
and non-classical constitutive theory of plasticity (NCP) (Fan, 1987; Fan and Peng, 1991 ;
Peng and Fan, 1993), etc., have been proposed and have proved valid in many problems,
but few results about their application in the analysis for elastoplastic buckling were
reported.

In this paper, a non-classical relation of plasticity (NCP) is introduced based on a simple
mechanical model and applied to the analysis of elastoplastic buckling of the thin-walled
cylinder subjected to longitudinal compressive loading. It is seen that NCP can well describe
the material instability and the response of the material under an abrupt strain disturbance,
so one of the purposes of this work is to investigate whether or not the traditional “‘over-
prediction” to the buckling stress by using the incremental form of the elastoplastic consti-
tutive relation can be improved by using a sophisticated constitutive law. Both the incremen-
tal and finite forms of NCP were derived and applied to the elastoplastic buckling analysis.
The critical stresses of the thin-walled cylinders made of aluminum alloys AMT" and IT1T
were analyzed and compared with the experimental data provided by Shen and Han (1981).
Comparison shows that the results given by the finite form of NCP seems satisfactory while
the incremental form of NCP may probably overpredict the critical stress in some cases.
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Fig. 1. A simple mechanical model for the proposed constitutive equation.

NON-CLASSICAL CONSTITUTIVE EQUATION OF PLASTICITY

In a series of papers, Fan (1987), Fan and Peng (1991), Peng and Ponter (1994)
proposed a constitutive equation of plasticity for dissipative materials, which could be
related to the Chaboche’s model (Chaboche, 1979) and the endochronic constitutive equa-
tion (Valanis, 1980), but the microscopic aspects are further emphasized so that it may be
able to describe the more complicated behavior of materials (Fan and Peng, 1991 ; Peng
and Ponter, 1994).

The constitutive equation introduced in this paper is restricted to initially isotropic
and plastically incompressible materials under the condition of isothermal and small defor-
mation. For easy understanding, a simple mechanical model (see Fig. 1) is introduced. In
Fig. 1, the r-th dissipative mechanism is described by the spring E, (with stiffness C,) and
dashpot-like block a, (with plastic damping factor a,). E, is related to stochastic internal
structure on the microlevel and makes no contribution to the macroscopic elastic shear
modulus G. The energy stored in the E, corresponds to that stored in microstress field by
the respective pattern of lattice defects, for instance, dislocation. From Fig. 1, it is obtained
that

o+ Z oy (1)
Q7 = C(es—p§) 2

with
e = ey 3% 3)

where e, ¢ and e, represent plastic, elastic and total deviatoric strains, respectively, s,
denotes deviatoric stress and p{Y and Q{ the r-th deviatoric internal variable and the
corresponding generalized frictional force that satisfy the following relation

dp(r) (r)
" — —
v T 255 d

@
in which

d{ = || def || )

where || @ || denotes the Euclidean norm and f, (r =0,1,...,n) the material hardening
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(softening) function that is closely related to the internal structure of deformed material.
The evolution of Qf can be expressed in the same form as that of Q. If we choose
ay = s) and notice that p, = e, then eqn (4) becomes

de?,
1(]0) = ngo d—C] (6)
Combining eqn (2) and eqn (4), one obtains

dQf) = Cdef—af7' QAL (r=1.2....1) ™

where o, = C,/a°. It is easily derived from eqgns (1), (6) and (5) that

—53fo =0 ®)

n
S~ Z Qx(yr')
r=1

If we choose syf, = k+ R where k and R denote respectively initial yield stress and drag
stress and f, =1 for r = 1,2,...,n, we reach Chaboche’s model immediately. If £, = f(2)
for r = 0,1,...,n 1s chosen, the following endochronic constitutive relation is derived by
substituting the integral of eqns (7) and (6) into eqn (1)

de?, z de?,
- 0"y s i ’ 9
sugﬁfpunﬁm ©)
in which
p@) =Y Ce (10)
r=1
and
d¢
dz = 1n
f@

as suggested by Wu and Yang (1983) and Wu ez al. (1984). It, therefore, is able to encompass
many other constitutive models as its special cases (Watanabe and Atluri, 1986 ; Chaboche,
1986).

It was found that for some materials there does not exist a distinct yield criterion.
Inelasticity is a gradually developing process, the rate of which may be initially extremely
small but increases with increasing loading. It was pointed out recently by Drucker that
“the more sensitive the measurements that are made, the smaller will be the diameter of
each yield surface. When a motion of a modest number of dislocations is detected as
macroscopic plastic deformation the observed yield surface will shrink to zero™ (Drucker,
1991). Assuming some kind of dissipative mechanism becomes active at the very beginning
of deformation so that in eqn (9) sy (the size of the initial yield surface) tends to zero, the
derived constitutive equation reduces to the following non-classical constitutive equation
of plasticity (Peng and Fan, 1993)

z d 4 n
8y =J p(z—2") djf dz’, or ds;= Y [Cdef—0,Qdz] (12)
r=1

0

On the other hand, it should be pointed out that eqn (12), can also include eqn (9) as
a special case provided «,— oo while C/a;, < oo so that the corresponding exponential
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function takes the unit-impulse function as its limit (Peng and Fan, 1993), which cor-
responds to C; — o (see Fig. 1). In practical application «, should be sufficiently large so
that p(z) becomes a highly decaying function which ensures the plastic strain rate to be
very small in the vicinity of the origin. Both theoretical and numerical analyses showed
that eqn (12) is able to well describe the material response under complex loading histories
(Murakami and Read, 1987 ; Peng and Fan, 1992 ; Valanis and Fan, 1983 ; Fan and Peng,

1991).

In the case of monotonically proportional loading, eqn (12) leads to the following

relation
sy = f pe—2)f()dz = A@n,
0

where n; stands for the unit vector along the loading direction and satisfies

nijnij B 1

By defining
ds =dsyn,;, déf =d{ = defn;

one has

_ds ~ Si
def = (de— ﬁ) ny, eh= <e,-j— 2&) n,

and the following relations

3

a1 [, ds
[d 2G

d2=ﬂ—z)=% e—E], {=B(z)=¢é—

where G denotes elastic shear modulus. Substituting eqn (17) into eqn (13) gives

A 3
S——E(—Z)'<€—‘2Ta>

Letting o and ¢ be the equivalent stress and strain, one can easily find that

o

It

ey

I
S

G
and therefore obtains the secant modulus by combining eqns (18) and (19)

2GA(z)

E = 2GB(z) + A(z)

5

o | Qu

_3
T2
Further, by differentiating eqn (13) and using eqn (17), we have

inds = n 3D (45 L
ds; = n;A'(z)dz = n, 7o) (de— 2G>

so that the tangent modulus can be derived by combining eqns (15), (19) and (21) as

(13)

(14)

(15)

(16)

(17

(18)

(19)

(20)
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Given the form of the hardening function f{z), one can calculate the secant and tangent
moduli respectively with eqns (20) and (22). For example, by choosing

(@) =c—(c—1e* (23)
as used by Wu and Yang (1983) and Wu et al. (1984), one obtains

A@) =Y g— [c(l ) —

r=1 Y%

c—1

_ﬂar(eAﬂz _e_zrz)il

o

B(z) = cz+ %(e‘ﬁz— D

n

A=Y [cc,e—“r2+

r=1

c—1

2%, —p

C,(fe % — cx,e“rz)} (24

and then derives the corresponding E, and E, with eqns (20) and (22).
Now letting

da,
Efz—a—x and E? = 2

25
&y de, (25)

be, respectively, the secant and tangent moduli at the point (o, ¢,) of monotonically tensile
or compressive stress-strain curve, one can easily find the following relations

1 1-2v 1 1 1-2v 1
_ o - 26
E° 3E + E’ E° 3E + E, (26)

in which v denotes Poisson’s ratio.

THE BASIC EQUATIONS FOR THIN-WALLED CYLINDERS

In order to determine the critical stress corresponding to the initial elastoplastic
buckling of thin-walled cylinders, we use the small deformation and plane stress assump-
tions, i.e., 6, = T,, = T4, = 0. Suppose Ac,, Asg, AV.e and Au, Av, Aw be the increments of
strain and displacement of the middle surface, then the strain increment of the point at z
from the middle-surface can be expressed as (Wu and Xu, 1983)

0% (Aw) 0*(Aw)
Ag, = Agy—2z , Agy = Aggg—z—————,
> 0 ax2 9 00 R2592
X (Aw)
Ay = Ayugo —22m 27
where
_ 0(Aw) _0(Av)  Aw _ 0(Aw) | 0(Av)

Aey = o Aggy = RO R’ Ayyp = R0 + A% (28)

The equilibrium equations of the material element of a thin-walled cylinder can be written
as (Wu and Xu, 1983)
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J(AN,)  O(AN.) O(AN,s) = O(AN,)

ox R0 - % “ox T rag

*(AM,) P (AM,,) @°(AM,) AN,
Ox? Rox 00 R206? R

PAw)  P(Aw) . P(Aw)
h<a’* o T Reag T Ravex

): 0 (29

in which ¢, o4 and 7, represent the stress at middle-surface before buckling occurs, AN,,
ANy, AN, and AM,, AM,, AM , denote respectively the increments of the traction and
moment on the cross section and are defined as

hi2 b2

Acy,dz, AN, = f At ,dz

—h/2

2
AN, = f Ao, dz, ANy = J

— w2 —hj2

A2 b2

42
AM, = f Ac.zdx, AM,= j

—hj2 —hi2

Acyzdz, AM, = J At pzdz (30)

—h{2

where £ is the thickness of the wall of the cylinder. If a stress function ¢ is introduced such
that

el 8*¢ G
ANX—*R*;é*G—zs ANG_E;;a AN,y = ~ Roxdo

(3D

then the first two equations of (29) will always be satisfied, and this problem can thus be
solved by making use of the third equation of (29), the constitutive equation and the
following compatibility equation obtained by eliminating Au and Av from eqn (28)

52(A8x9) + 82(Aﬁeo) 52(A"/'xeo) 52(AW) -0

R?*09? Ox? R000x Rox?

(32)

CRITICAL STRESS ANALYZED BY INCREMENTAL FORM OF NCP

Peng and Fan (1993) proposed the following incremental form of the non-classical
constitutive equation

As; = 2G,Ae;+T,B,Az (33)

in which

A
T, =<1+—>—1, 2G, = AT,

2G
> 3 ) 1 _ efu,Az
A= r;} kC., B;= —r; ko.sP(z,), k= v
AefC
) = g~ WAz U] e ube 34
() = e Gy )+ (1 —e ) (34)

In the case of plane stress, eqn (33) can be expressed as (Peng and Fan, 1993)
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Ao, T G2 14 ]( Agy
Agy} = | D5, 22 Dha(qAg (35)
Aty W 42 [PRRV.V
in which
Dy==" (Lj=124 (36)
Dy,
2AG—-G,)
D] = [D\]+ ——2[D,], H=14+——"2"—BAe?
[ ] [ 1] H [ 2] 2Gf2(Z)AZ 3] ij
c, ¢, ¢, O
¢, ¢ ¢, 0
D=1 ' 7 , C,=K+%, C,=K-1G,
c, ¢, ¢, 0
0 0 0 G,
D] =-—L~—(B By, B,,Bo) (Ae?, Aef, Ae?, Aek) 37
Zprz(Z)AZ X2 > Ty X X9 > ¥ X
Integrating eqn (35) over the thickness % and noticing eqn (27) one obtains
hAe,, T P 14|~ (AN, Cii Ciy Cu][AN,
hAggy t = | D5 D5 24 ANy =|Cy Cyp Cyy|{AN, (38)
hAY 0 Dy 42 44 AN, Cyi Cyy CuliANg
( A (Aw) )
A ox?
e D/ ’
x Px 11 12 14 3
MM,y = =Dy Dy D[4 A (39)
L R?06*
Aan a Dy, Dy,
262(Aw)
" ROx00 )

When a thin-walled cylinder is subjected to longitudinal compressive load and before
buckling occurs, the stress state can be expressed as

P
2nRh

Op = Txp = 07 Ox = (40)

In buckling analysis the assumption of geometrical imperfection is important. It was
reported (Shen and Han, 1981) that when subjected to longitudinal compressive load, the
initial elastoplastic buckling of the thin-walled cylinder is axisymmetrical and develops
gradually, so it is reasonable to assume the following form of geometrical imperfection

Aw = w,, sin (%x)

Correspondingly, the stress function ¢ can be chosen as follows

(41)
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¢ = ¢, sin <_n%z x) (42)

Although in some of the previous work (Wu and Xu, 1983), both eqns (41) and (42)
were used to formulate the critical stress, it can be found that eqn (42) is sufficient to take
into account the effect of the geometrical imperfection, while eqn (41) can be derived as a
result of eqn (42). By using the relation in eqn (31) the following generalized incremental
stress field corresponding to the given geometrical imperfection can be obtained

2
AN, = AN, =0, AN,= — (TLE) ¢, sin (% x> (43)

With eqns (38) and (28), one obtains the following incremental strain field in the
middle-surface

Agy ) ) Ci;

mm . M
A890 = — Z <T> ¢m sSin (‘f )C) sz (44)
A"/xgo C42

and the component of displacement, Aw, by noticing that the initial buckling is assumed to

be axisymmetrical,
R (mm . (mm
Aw = " <~L~> 2¢,,C55 8in (T x> (45)
This is just the assumed geometrical imperfection shown in eqn (41) provided
R mm\?
Wp = Z(bmczz T (46)

By substituting eqn (45) into eqn (39), one obtains the following relation

A x th 4 D/12

mim . mmn ,
AM() = 12 ( L ) ¢m sin < L x) 22 (47)
AM,, “

It can easily be found that the derived strain and displacement fields (see eqns (44)
and (45)) satisfy the compatibility eqn (32).

Making use of the third relation in eqn (29) as well as eqns (43), (45) and (47), one
obtains the following compressive stress corresponding to initial buckling

WDy, [mn\? 1 L\
G"—_[ 12 <T)+chu(%ﬂ @

The critical condition for buckling to occur is that the work determined by the given
generalized stress and the corresponding strain field is equal to the corresponding external
work, i.e.,

AW,‘,,, = Aw‘ext (49)

which leads to
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L L Lo BR(A PA
h J oAy d, + J ANyAego dx+ J am, EE8 g o PO (50)
o o 0 Ox 27R

By making use of eqns (28), (40), (43), (44) and (45), it is derived that

mm\* 12 1
7mEy - 51
( L ) R*1? Cn DY, ©L

This is just another form of the critical condition expressed in eqn (49), from which
the wave length L/m can be determined. The combination of this critical condition and eqn
(48) gives the following critical stress ., corresponding to initial buckling

1l = | 201
Oor = | Ox |lmin = =
\/§R Ca

(52)
For convenience of calculation, eqn (52) can be rewritten as

R 1 [Dp}
fub —u 53
" e 2

For any given o,,, the matrixes [D], [D’] and [C] can be calculated sequentiaily and
then the corresponding R/k can easily be determined.

CRITICAL STRESS ANALYZED BY FINITE FORM OF NCP

In the deformation theory of plasticity, the relation between stress and strain of plane
stress problem can be expressed as

1—2v 1
& = ﬁ* (O-x+0-6)+ E(ax—%o.ﬂ)

1-2v 1
& = T(a.’c+69)+ E(UG—%UX)
3
Vxo = E‘Exe (54)

5

and the corresponding increments of strain components can be derived as

1 As
Ae, = Ko(Ao,+Acy) + 7 (Ad, — 3A00) + K\ (0. —300) 3

5

1 A
86 = Ko (Ao +A00) + - (Aoy—1A0,) + Ky (0~ o) —

—AG (55)
G

in which

G=./0240:—-0,0,+31%

1
Ad = 5 [(o —éfT@)Aax +(0s— %O})Aaa +31,9AT ] (56)
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I—2v 1 1
K, = 3E ° Ki=——+ (57)

5

denote the equivalent stress and its increment. Then the relation eqn (55) can be written in
the following matrix form

Ag, cf, Cf, Ci, Ao,
Agy p = |C3, ng C§4 Aoy (58)
Ave) L, €4, C4,1Aty

in which

1 20,—0p |/ 1 26,—0,
C?1=Ko+*+K1|: 6], C522K0+_+K1< : )2

E 26 E 26
1 T, 1 20, —0, 20,—0,
CZ4=3|:ES+K1(?G>2:I, C‘112:Cgl =KO_2_EX+K1 28 : 020—_
; ; 26, —06y Trp y 4 200—0, Ty
Cils = Ci = 3K1 _ —, (% = (%, = 3K, _ — (59)
26 7] 25 é

The incremental stress can also be expressed by incremental strain components

Ao, D{, DY, Di, Ae,
Aoyt =|D45, D3, Di|{As (60)
Aty D4, D%, Di\Ay,

where
[DY] = [C! (61)

or by using the following relation

3(ax + 69)2 2

_ 1 2
£= \/5\/(8):—89) + ko +yx0

1
AE = %[k1A8x+k2A£0+k3A’yx0] (62)

the elements of [D4 can be expressed as

3k? 3k3
Dalll = gEs<C5—4—kIC6>, D‘ziz = §<C5—4—k2C6>

E [ 3k Kk
D =§<1——3C6>, D4, = DY, =§ES<C4— ! Zcé)

k 2k
kik kok
Dy = D4 == (E~E), Di=D}{="7"(E~E) (63)

in which
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2 2E, s
+ S E, Ci=l———, Ci=1——7
G

C, = E 4E C, =
' t3ke G=75,13 C,

1—2v

E.—FE,
C6=TS’ k(]: 1+

4(1—2v)ET __ (E—E)@.+0))
3E 3C,6°

1 1 Ex
ki = g 5lCo—iEol k= polCoiEal k=2 (69

1

Choosing the stress function the same as that in eqn (42) and following the
same procedure as that in the previous section, one obtains the following expression
for the critical buckling stress of a thin-walled cylinder:

o :|O-|=———h \/Bj or 5: 1 \/E (65)
cr x |min \/§R ng ’ h \/gﬂ'cr ng

ANALYTICAL RESULTS AND EXPERIMENTAL VERIFICATION

The critical stresses o, of the thin-walled cylinders subjected to longitudinal com-
pressive loading were analyzed with the derived relations and compared with the exper-
imental data (Shen and Han, 1981). These cylinders were made of aluminum alloys AMTI
and ITIT. By choosing n = 3, the corresponding material constants were determined as

follows:

AMT  C,, =(8.065 10%, 8.654 % 10°, 1.686 + 10°) MPa

%5, = 1987,227.8, 18.1
fz) =1

IMT: C,3=(1.003%10°% 1.597 % 10%, 2.160 * 10°) MPa

o = 4603, 411.7, 17.6
ey =1

The elastic modulus £ and Poisson’s ratio v of both materials are 73.0 GPa and 0.28;
respectively. The tensile o-¢ relations of the two materials determined by the above material
constants are shown in Fig. 2(a) and Fig. 2(b), respectively. It is seen that the fitting curves
are in satisfactory agreement with the experimental data (Shen and Han, 1981).

Stress (MPa)

500 200 )
] :
400
E‘ 150
3003 =
E g
e = 100
3 2
= 8
2003 : & :
= O [ Experimental O3 O Experimental
é ———  Fitting curve 50 —— Fitting curve
1003
Oa‘rrrm'mﬁ'm‘rwmvrrrm-rrmwn'mwm‘m'rrl 0
0 1 2 3 4 5 0 1 2 3 4 5
Strain (%) Strain (%)
(a) 1T (b) AMT

Fig. 2. Tensile stress and strain relations.
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500+ 200+
= 1754
4007 \O 3
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e 3 5 3 u
g 3 fim i B | & 1007
@ 3 = .
K] - £ = i
§ 2005 E 755 O 3 Experimenta
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1003 e
3 3
3 25:
c—1ITIHIHIIATYl”| TTTATTITITTTITTFTITTTTITY C_ T T T T T T T T T T 1 T T
0 20 PR 80 100 10 15 20 25
R/ R/
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Fig. 3. The relations between ¢, and R/h analyzed by the finite form of NCP and experimental data.

500 20
d u!
E wsz\
4003 3
3 1507 ja=n)
-~ 3 3 = [
3 o O
& 3 T 1254
& a00] ) E e 04
PR =] % .
8 3 =2 O g 100
@ u v 3
§ 200; ) —g' 757 0 O Experimental
Z B O O Experimental 2 e
© 3 © & ——  Calculated
b ~—— Calculated 50
1003 3
e 2]
E| E
cé)ll!IIIIHQIOIIIIIHIIJC;IIIIIH%IOIIIIIIII[BIOIIIIHIT;(I)O 0101 T T T 1!5 T 7T T 2Io T 3 T T 25
Rk Rin
(a) 21T (b) AMP
Fig. 4. The relations between o, and R/h analyzed by the incremental form of NCP and experimental

data.

Figures 3 and 4 show the variation of critical stress o, against R/A (the characteristic
size of the thin-walled cylinders) calculated respectively by the finite and incremental forms
of NCP and the experimental data (Shen and Han, 1981), the ratio of the length of the
cylinders L vs the radius R is around 3 for specimens, which is much larger than the wave
length of the buckled cylinders. For the cylinders made of AMI the relation between o,
and R/h predicted by the finite form of NCP is very close to the experimental result (see
Fig. 3(b)), while the incremental form of NCP overpredicts the critical stress 7., (the largest
error is about 25%, see Fig. 4(b)). For the cylinders made of IT1T the finite form of NCP
predicts a little more conservatively o, when R/A is below 70 (see Fig. 3(a)), in this range,
the critical stress a,, predicted by the incremental form of NCP also fits the experimental
results well (see Fig. 4(a)). In the range where R/h > 70 it is seen that either finite or
incremental form of NCP overpredicts the critical stress g, (see Fig. 3(a) and Fig. 4(a)). It
is seen that when R/A is larger than 70 the corresponding ¢, almost suddenly drops from
300 MPa to around 250 MPa. Compared with the tensile stress and strain relation, it is
easily found that in this region there is a very strong variation or reduction of the tangent
modulus (see Fig. 2(a)). Noticing that in this region, the wall of the cylinder becomes very
thin so that the structure becomes very sensitive to local material or structural defects, this
abnormal reduction of ¢, may, therefore, be mainly attributed to the effect of local
structural or material defects, and a proper consideration of the effect may be helpful to
produce a more reasonable prediction.
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DISCUSSION AND CONCLUSION

Discussion

A haunted problem in plastic buckling analysis is that the incremental theory of
plasticity, which is generally thought to be able to generate a more realistic result, fails to
give a better prediction than the deformation theory of plasticity. This problem is serious
and greatly slows down the progress in plastic buckling analysis. In the past several decades,
a lot of work has concentrated on this paradox and many explanations and modifications
have been suggested (Batdof, 1949 ; Sewell, 1963 ; Cristoffenson and Hutchinson, 1979),
but few of them are general enough to work well in many cases. Onat and Drucker (1953)
pointed out that by taking into account the effects of the initial microdefects, the buckling
loads would have a great reduction. This explanation was supported by Hutchinson (1973),
Hutchinson and Budiansky (1974), but some further work (Gellin, 1979 ; Roche, 1986;
Bushnell, 1982) showed that there still exist some phenomena that can hardly be illustrated
by this kind of explanation.

On the other hand, it was found in a strain-controlled biaxial material test that in the
plastic range an abrupt change in the direction of strain path results in a reduction of the
load-carrying capability of the material or the material instability (Ohashi and Tanaka,
1983 ; Ohashi et a/., 1975). This is an important concept, which, combined with the concept
of initial nonhomogeneity caused by microdefects, may provide some available information
to plastic buckling analysis. Microscopically speaking (Ohashi and Tanaka, 1983 ; Ohashi
et al., 1975), material instability is induced by a change in microscopic structure, in other
words, the accumulated dislocation formed during the preceding deformation is remobilized
by an abrupt change in strain path and this causes a release of the energy that is stored in
the microstructure (as the energy stored in the spring C,, see Fig. 1 and the illustration in
part 2) and reduces the external work needed for dislocation movement. Macroscopically
the material partly loses the load-carrying capability. NCP is able to describe this kind of
material behavior. Figure 5 shows the response of the adopted two kinds of materials under
strain-controlled loading with abrupt changes in strain paths. It is seen that material
instability occurs at each change in strain trajectory. This phenomenon is in qualitative
agreement with the experimental results reported by Ohashi and Tanaka (1983) and Ohashi
et al. (1975). Although what is described in Fig. 5 is a pure material property, the infor-
mation provided may be available to illustrate the “paradox”. Compared with TT1T, the
reduction of the load-carrying capability of AMT caused by material instability is more
severe so that the corresponding critical stress o,, predicted by the incremental form of the
constitutive relation is higher without a proper consideration of this reduction. Since
nonhomogeneity caused by microdefects inevitably exists, local instability might occur in
a structure earlier than that with the perfect material, as used in the analysis.

In some other work (Sewell, 1963 ; Cristoffenson and Hutchinson, 1979), it was argued
that the corner at loading surface plays an important role in plastic buckling because the
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Fig. 6. Stress trajectory corresponding to pure shear strain following pure tensile strain.

buckling stress is very sensitive to the out normal of the local loading surface. The adopted
constitutive relation can well describe the effect of the corner in loading path. Figure 6
shows the stress trajectories of the adopted materials subjected to the path of axial straining
following shear straining ranged around 3%. It is seen that for the given strain path, the
shear stress decreases once the tensile strain occurs. One can, therefore, imagine that at the
critical state of the buckling of a thin-walled cylinder, given a disturbing strain perpendicular
to the original strain direction, the original stress component can hardly hold constant
without a marked increase of the corresponding strain component. The consideration of
this material property may also be of help for plastic buckling analysis.

Although the NCP is able to describe phenomena such as material instability and the
corner in the loading path, which may be of benefit to settle the paradox in plastic buckling
analysis, it is seen that the incremental form of the adopted constitutive relation still
overpredicts the critical buckling load in some cases. It may partly be attributed to that
when disturbance occurs, on one hand, the material instability occurs, which partly loses
the load-carrying-capability ; on the other hand, both the experimental result (Ohashi and
Tanaka, 1983 ; Ohashi ef al., 1975) and the theoretical analysis show that at the instant
when material instability occurs, the material response is almost purely ¢lastic, which leads
to an increase of the stiffness of the system, which, in turn, leads to a higher critical stress.
The finite form of NCP cannot describe the phenomenon of material instability and the
corresponding increase of the stiffness of material and its system, which, on the contrary,
provides a more reasonable critical stress.

Conclusion

In this work the incremental and finite forms of the NCP are applied to the analysis
of the plastic buckling of thin-walled cylinders subjected to longitudinal compressive load.
Compared with the experimental data, it is seen that both forms of the adopted constitutive
relation can produce satisfactory prediction for the critical stress of the cylinders made of
aluminum IT1T in a wide range of the characteristic size R/ of the cylinder. But for the
cylinders made of aluminum AMTI the incremental form of NCP produces less satisfactory
prediction than the finite form of NCP. Generally, the critical stress predicted by the finite
form of the NCP is smaller than that by the incremental form and closer to the experimental
data.

The capability of NCP in the description of material instability and the corner of
loading path is discussed. Although the incremental form of NCP is able to describe
material instability and the response of material under an abrupt strain disturbance, it still
overpredicts the critical plastic buckling stress in some cases. The discrepancy between the
reduction of the load-carrying capability caused by material instability and the increase of
the stiffness of the system, as well as the nonhomogeneity due to the existence of microdefects
may partly account for the existing paradox.
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